Monday, December 26, 2011

Boiler Upgrades That Save Fuel and Energy: Clip 1 of 6

Boiler Upgrades that will Save Fuel and Energy on Industrial and Commercial Boilers from 50 HP and UP! Clip 1 of 6. Recorded webinar from Industrial Controls with speakers Bill Hopler, Mike Handler, Chuck Kudy, and Bob Thomas. May 12, 2010. Topics Covered: -How the traditional "jack shaft" mechanical linkage system works -Why the "jack shaft" linkage is inefficient and wastes energy -What a typical boiler efficiency curve looks like -What the "linkage-less" system looks like and how it works -Why customers that have upgraded are saving 5% or more on their natural gas/oil bill -Actual projects that have been completed, before and after results -Other places to save energy in the boiler room What You Will Learn: We will review how the air/fuel ratio system works on your boiler, and why a "jack shaft" system is inefficient and wastes energy. You will also learn why mechanical linkage systems can be adjusted to match your boilers' efficiency curve. This webinar will help you understand how the "linkage-less" system works and how to determine if your boilers are a candidate for 4-10 % fuel savings. In addition, we will discuss how to estimate your energy savings and how to get started on a project. Who Should Attend: Project, Process, Energy Management, and Boiler Room Engineering and Maintenance Personnel at: -Hospitals and Medical Centers -Universities and Colleges -Chemical Plants -Commercial buildings -Schools -Food Manufacturing Plants -Pulp and Paper mills -Plastic and ...

Good Bargain Oakley Splice Lenses Ion Iptusb Buy Online

Wednesday, December 21, 2011

Boiler Upgrades That Save Fuel and Energy: Clip 2 of 6

Boiler Upgrades that will Save Fuel and Energy on Industrial and Commercial Boilers from 50 HP and UP! Clip 2 of 6. Recorded webinar from Industrial Controls with speakers Bill Hopler, Mike Handler, Chuck Kudy, and Bob Thomas. May 12, 2010. Topics Covered: -How the traditional "jack shaft" mechanical linkage system works -Why the "jack shaft" linkage is inefficient and wastes energy -What a typical boiler efficiency curve looks like -What the "linkage-less" system looks like and how it works -Why customers that have upgraded are saving 5% or more on their natural gas/oil bill -Actual projects that have been completed, before and after results -Other places to save energy in the boiler room What You Will Learn: We will review how the air/fuel ratio system works on your boiler, and why a "jack shaft" system is inefficient and wastes energy. You will also learn why mechanical linkage systems can be adjusted to match your boilers' efficiency curve. This webinar will help you understand how the "linkage-less" system works and how to determine if your boilers are a candidate for 4-10 % fuel savings. In addition, we will discuss how to estimate your energy savings and how to get started on a project. Who Should Attend: Project, Process, Energy Management, and Boiler Room Engineering and Maintenance Personnel at: -Hospitals and Medical Centers -Universities and Colleges -Chemical Plants -Commercial buildings -Schools -Food Manufacturing Plants -Pulp and Paper mills -Plastic and ...

Discount Coconut Juice Nutrition Facts

Monday, December 12, 2011

Honeywell E3 Point Gas Monitoring System

E3Point is a toxic/combustible gas monitor that makes a commercial operation run more intelligently to protect people, property and the bottom line. It goes beyond protection to increase energy management, efficiency and economical value. Efficient Operation + Energy Savings + Economical Value = E3 Point

Shop For Lockable Mailbox

Thursday, December 8, 2011

Heating and Air Conditioning: Be Prepared for Warm Weather by Maintaining AC Units

!±8± Heating and Air Conditioning: Be Prepared for Warm Weather by Maintaining AC Units

System efficiency should be on top of every homeowners list when utilizing heating and air conditioning. The extremely hot temperatures beginning around April are energy draining to say the least. These uncomfortable conditions can last through October. Heating units must also be proficient to uphold lower monthly bills. Both should be inspected yearly to determine where improvements can be made. Older systems are less efficient. Over time they begin to perform poorly. Maintenance can often keep them running well for many years. There comes a time when even the utmost care does nothing but keep units running at bare minimum. A service call can get your home ready for the intense summer heat by improving unit performance. Experienced technicians are capable of looking over the unit. They may find a part replacement to be enough to improve each systems operation. In the worst case scenario, installation of a new unit might be recommended.

Air Conditioning Repair Service: What Happens During a Typical Visit?

An air conditioning repair service is the starting point for increased heating and cooling efficiency. A technician will look at the current condition of the unit, registers, and ductwork. How old is the existing unit? What is its SEER rating? Was it properly installed? These are all very important questions. Units reach a point where they are outdated. Even if they are running properly, they are not capable of producing the needed efficiency. They may have a SEER rating of twelve or below. Newer models start at a rating of thirteen and increase to as much as twenty. Anything below the standard is considered inefficient. High temperatures bring heavy use upon these units. Higher efficiency ratings create immense savings for every month of the year. A SEER rating of twenty is a homeowner's best choice when it fits within their budget. Installation determines the significance of the energy rating. Units which do not fit the size requirements of a home actually use more energy. Improper set up results in higher costs, heavier use, and a less efficient system.

Has it been properly maintained throughout use? Maintenance is what keeps a system operating at its best. When this necessary upkeep is not performed, a unit can become very expensive to run within a home. Most owners change filters regularly but forget about all the other maintenance a heating or cooling unit entails. This results in dirt buildup throughout the system. As use continues without proper cleaning, parts begin to work harder to perform as well. Eventually a part will break leaving the system inoperative. Standard upkeep can prevent this from occurring. Systems last longer when they are cared for appropriately. A technician can determine if this has occurred. In many cases they can clean the unit, make the repairs, and have it operating at its best fairly quickly. If the unit has been neglected for far too long or is simply too old, they typically recommend replacement. High temperatures can be overwhelming and in some cases, deadly. It is best to schedule this system checkup each year and follow the direct advice of a reliable professional.


Heating and Air Conditioning: Be Prepared for Warm Weather by Maintaining AC Units

Life Fitness 9500hr Recumbent Bike Best

Friday, December 2, 2011

Reducing Heating Costs: Why Do Natural Gas Prices Fluctuate Each Year?

!±8± Reducing Heating Costs: Why Do Natural Gas Prices Fluctuate Each Year?

During the winter months, home heating expenses become a top concern of most homeowners. These systems can create fairly high energy costs if they are not maintained properly or become faulty. Heating units themselves are not the only reason for higher pricing in the heating industry. Heaters can run off of electric, water, and gas. Water as a source is not as common. Most homes use electric or gas for heat. An efficient electric heater that is well maintained, should average the same energy use every winter with the only price increases being from the provider themselves. Every year these costs go up by at least a few cents all over the United States. For people that have gas heaters, the cost increases are often much higher. Three specific factors that determine how high gas heating costs for US homes rise. Unfortunately they are completely out of the consumer's control.

Central Heating - Uncontrollable Factors That Affect Heating Costs

Central heating is not just an item of convenience. For those of us who do not live in tropical areas, heating is a necessity that cannot be lived without. World oil prices, government natural gas supplies, and demand all play a role in how much it will cost to heat our homes. Any time these prices are drastically increased, consumers as a whole will feel the affects. Prices make their way down through the energy providers to be dispersed to individual consumers. When they decrease, so do your heating expenses. The federal gas supply fluctuates as well. This supply will vary based on the amount used and availability. In years where less than the rationed amount is used, a surplus is created and available for the next year. Surpluses mean lower gas heating costs. If you remember learning about economics in school, this is the simple law of supply and demand. Less of a demand means more is available and lower prices and vice versa. There are a few things we can do to decrease the overall demand and lower heating prices.

Heating Contractors - Start Here to Decrease Energy Use and Consumer Demand

Lowering your own homes heating costs is not only beneficial to your pocket, but can be helpful to others as well. Weather does play a big role in the amount of gas needed to heat your home. There are things you can do to reduce this amount even in the coldest of times. Heating contractors can help with this process and get you started on the right track. The first place to start is with having your unit inspected and serviced. Units that are not maintained consume more energy and gas to effectively heat a home. Have a contractor ensure that the unit is working properly, clean, and running at its full potential. They can also make certain dangers such as gas leaks or fire hazards are not present. Ductwork, registers and other associated heating elements can also be cleaned and checked. Once this work has been done, you may also decide to weatherproof you home and take other measures that can keep the heat in better and reduce energy use.


Reducing Heating Costs: Why Do Natural Gas Prices Fluctuate Each Year?

Mk Tile Saw Sale Off Shop For Curbside Mail Boxes

Tuesday, November 29, 2011

Air Conditioners Changing to R410a Refrigerant

!±8± Air Conditioners Changing to R410a Refrigerant

With the world craze to "go green" we are seeing a new system being implemented in the way we use air conditioning.  The existing system which many people refer to as Freon is actually what is termed R-22. The R-22 refrigerant is being replaced by the R410a refrigerant which is a much more environment friendly and energy conserving system.  This overhaul is slated for 2010 and will replace the R-22 with the R410a completely because they work on two opposite pressure systems.

The copper lines that the R-22 use will need to be changed out because it uses mineral oils that break down into damaging carbons that are speculated to be causing the global warming crisis the governments of the world seem to be so worried about. R-410a will use synthetic oil that will be able to sustain at much higher temperatures than that of the old.

The old piping will have mineral oil deposits throughout the piping and this is what the new system is aimed at improving and replacing. If the piping is not replaced it will wreak havoc with the new system because it will not be able to take the pressure of the R410a and will develop deposits on the compressor walls and damage the metering device.

The implementation of this new system will need a fresh start because if you were to combine the two it will cause the very same problems that the R-22 is said to be causing.  The old system could have moisture retained inside the piping and this does not go well with the functions of the new R-410a.

If you are told by an installer or sales person of the new refrigerant that you can use your existing piping because they are going to blast it out or flush them out make sure you tell them you know more than they do and you want to have the piping completely replaced when they install the new heating and air system.

Whether you believe in global warming or not is irrelevant because we are going to see a change in all the carbon systems that are currently operating across the planet. This being the case you might as well do your homework and get a firm understanding of what these changes are going to be so you know what you need to do to and how to abide by the inception of new equipment.


Air Conditioners Changing to R410a Refrigerant

Kirkland Home Furnishings Sale Biofreeze Rollon Best

Saturday, November 26, 2011

Bot Bomb Buddies

!±8± Bot Bomb Buddies

It was a worst-case scenario for Specialist Five Doug "Dusty" Rhodes one bloody day in Vietnam. Vietcong snipers were targeting Rhodes and two fellow soldiers, one of whom was standing on a land mine while the other was attempting to place a pin in the device to keep it from exploding. Rhodes, who was later awarded a Bronze Star for heroism, ran to an open area and drew fire while the device was disarmed; and all three men escaped.

Fast forward more than three decades. Today's soldiers in places like Afghanistan and Iraq are no less heroic, but the twenty-first-century EOD (Explosive Ordinance Disposal) devices they have on their side do the dual duties of both drawing fire and disarming explosive devices-all without exposing humans to the dangers they so routinely handle.

No doubt about it: "Robots in Iraq save lives," says Sgt. First Class Jeff Sarver, who has trained with and deployed EOD robots in Iraq, Bosnia, Korea and the U.S.

"The most impressive thing I've seen a robot do was to unzip a suicide vest off a suicide bomber and then take the vest off," recounts Sarver, stationed at Fort McCoy (Wisconsin) and recently returned from service abroad. He describes the kind of multitasking "buddy" that will take the bullet for you, every time--- and diffuse a bomb with one (mechanical) arm tied behind its back, so to speak.

WHAT THEY CAN DO

Robot names are exotic: PackBot, ANDROS, Vanguard, ODIS, SWORDS, TALON. But they're all business. This robotic corps can wade through a foot of sewer water, climb stairs and over rubble, find and defuse old ordnance, identify a "false exhaust" in the undercarriage of a terrorist's car. They can ferret out and neutralize biohazards, radiation and explosive devices hidden in buildings, holes in the ground, wet concrete, even in a pile of corpses.

Here's a rundown of the capabilities of some of the robotic EOD devices currently in use by U.S. armed forces in military hotspots overseas. (Of course, some capabilities overlap, but this listing will demonstrate the incredible versatility of our robotic EOD corps as a whole.)

PackBot, manufactured by iRobot, weighs less than 24 kilograms, and once offloaded from its backpack can be deployed in less than two minutes. It can worm its way into sewers and other dangerous and constricted spaces covered with anything from slick tile to gooey mud. With eight interchangeable payload modules, it senses chemical and biological hazards, detects mines, deploys GPR (ground penetrating radar) and reaches as far as two meters in any direction while providing eyes and ears for its remote operators.

The ANDROS line of robots manufactured by REMOTEC (a subsidiary of Northrop Grumman) is as versatile as a circus family. The Mark V-A1, a heavy-duty vehicle with a unique articulated track, can climb 45 degree stairs and plow over obstacles as high as 24 inches. It has a manipulator arm, gripper, TV cameras and audio, and lights. Its littler brothers, the F6A and the Mini-ANDROS II, are scaled-down models that can get through tighter spaces like airplane aisles and allow quick tool change-outs while still tackling tough terrains. The largest, strongest, wheeled ANDROS is the Wolverine, an environmentally-sealed unit that can operate in high temperatures and humidity to facilitate both remote viewing and delicate manipulation tasks. Finally, over 500 ANDROS Wheelbarrow units deployed in 40 countries have the ability to change center of gravity, neutralize landmines and carry tools like disruptors and equipment to detect explosive and chemical dangers. All the ANDROS vehicles can be controlled from a distance via radio control, fiber optic cable reel, or portable cable reel. Typical price for an ANDROS: ,000-plus each.

Vanguard(TM) robots such as the MKII can slip under the bumper of a suspicious vehicle to inspect for the full range of CBRNE - chemical, biological, radiological, nuclear and explosive --threats. It can fit in the trunk of a police car or deploy from a military air drop. Its laptop computer-based command control unit responds to keystroke or joystick and the robot boasts an articulated arm, Proparms disrupters, and night surveillance cameras. It can convert from tracks to wheels in a matter of minutes.

ODIS (Omni-Directional Inspection System), developed by the U.S. Tank-Automotive Research, Development and Engineering Center (TARDEC), is a robot system for detecting explosive devices. Described as "a hovercraft on wheels," it can move forward, backwards, right or left and rotate its camera and lights separately or in combination. Even operators with minimal training can, with ODIS's help, identify out-of-place wires or false exhaust pipes underneath a suspicious vehicle. To protect against suicide bombers, a camera mast system allows inspection from a distance and communicates with a "palm-computer based translator system" to let ODIS interact with personnel to verify identifications and relay instructions to vehicle drivers.

TALON (TM) robots (developed by Foster-Miller) offer cutting-edge sensing ability for chemical, gas, radiation, and heat with readings that can be accessed simultaneously, remotely and in real time by means of a single integrated hand-held display (think multiple windows.) The transmitting unit sniffs out everything from gamma radiation to pepper spray and can measure 50 kinds of gas. The robot itself is man-portable and its unmatched speed can pace a running soldier. It can plow through snow and surf and isn't daunted by concertina wire or rock piles. TALON robots have completed more than 20,000 EOD missions in Iraq and Afghanistan.

SMWS (Small Mobile Weapons System) TALON robots carry mounts for everything from shotguns, Barrett 50-caliber rifles and M240 machine guns to grenade launchers and M202 anti-tank rocket systems. In fact, "Time" magazine recognized TALON's weaponized robot, SWORDS (Special Weapons Observation Reconnaissance Detection System) as one of the most amazing inventions of 2004, with the warning, "Insurgents, be afraid." Operators can stand up to 1000 meters away to operate the units, which cost between 0,000 to 0,000 each.

RESILIENCE AND REPAIRS

With that kind of price tag, you can bet repairs and spare parts are a big issue. A typical, repairable robot will complete more than 1000 missions. In the Near East, sand and oil are as much enemies to the machines as the bad guys are to US soldier, meriting the observation that one day's work in Iraq for a robot is equal to a year's worth stateside. Thus, parts salvage and quick repairs urge priority for Iraq's Joint Robotic System Repair Station, which has seen robots return with little left but the tracks.

But they're tough little droids. TALON, for instance, boasts that after the 2001 World Trade Center Attack, its robotics units withstood 45 straight days of being decontaminated twice a day without the electronics failing. One TALON, the manufacturer claims, has been blown up three times but is back in combat with new arms, wiring and cameras.

Another, riding on the roof of a Humvee which was crossing a bridge over a river in Iraq, was blown off into the water. To the delight of its handlers, its heavily-damaged control unit was able to direct the TALON to drive itself up out of the river and back to him. Now, that's maximizing resources.

Does this mean that soldiers will become less important or even obsolete as the robotics technology accelerates? Some think so, including Project Alpha, a U.S. Joint Forces Command analysis group, which predicts that by 2025, autonomous battlefield robots will be the rule, not the exception. But contrast that thinking to a recent incident reported in Stars and Stripes in which a group of engineers and armor soldiers of 1st Battalion, 13th Armor Regiment were patrolling near Camp Taji, Iraq.

They became suspicious of a hollowed-out log that turned out to contain artillery wires. As a wheeled robot went down to blow up the log while the soldiers stayed at a safe distance, an insurgent remotely detonated a second bomb nearby, and a third bomb was discovered. The pattern of the second and third bombs was designed to catch the Explosive Ordnance Disposal Soldiers as they investigated the first. The bad guy may have been smarter than the robot, but turned out to be not as smart as the soldiers who learned from the experience.

The lesson was unmistakable: Technology is great. But not just the technology has to keep up with the enemy, so do the humans. They're not only the ones who invent, service, and implement the machines: When bombs are the issue, humans have to be right every time, because soldiers are irreplaceable to the ones who love them.

WHAT'S ON THE ROBOT HORIZON?

Many new robotic devices are being developed for battlefield use. For instance, although the military currently uses unmanned surveillance airplanes operated by humans by remote control, DARPA (Defense Advanced Research Projects Agency) is developing something more sophisticated. Its -billion, five-year program aims to develop networked autonomous aircraft (J-UCAS) that can fly in formations and identify targets on which to drop bombs. Such devices will be impervious to human error factors caused by such things as fatigue and G-force while flying coordinated missions at up to 700 kilometers per hour.

Honeywell recently tested the MAV, or Micro Air Vehicle, a tiny (14-pound) DARPA project that operates via a ducted fan which has the engine and propeller inside a composite tube that serves as the flight surface. With a two-cylinder gasoline engine, it can "hover and stare" in ways that fixed-wing devices cannot, allowing it to deploy cameras and chemical sensors, flying up to 10,500 feet in altitude.

Army-funded researchers are developing an unmanned ambulance. The 3500-pound REV, or Robotic Extraction Vehicle, can drag wounded soldiers to safety and shelter them on two stretchers with life-support systems under its armored exterior as they prepare for evacuation. And Sandia National Laboratories has successfully tested an EDS (Explosive Destruction System) that internalizes explosions and contains the blast, vapor, and fragments; as well as treats and destroys biohazards such as anthrax.

For Sgt. First Class Sarver, improvements for EOD can't come too soon. "People have walked on the moon and we're still working with robots that have so much potential," he says. His solution: let the present EOD robot-producing companies put their heads together to make a super-robot that has the speed of the TALON, the weight and frame of the ANDROS, the optics and configurations of the PackBot.

Then, says, Sarver, "you'd have a really nice robot."


Bot Bomb Buddies

Bugaboo Stroller Cameleon Discount Prices Kaoss Kp3

Wednesday, November 23, 2011

The Propane Heater Hazards We Should Know!

!±8± The Propane Heater Hazards We Should Know!

The instability and fluctuation of fuel prices like oil is one of major reasons why many people prefer to use propane fuel, especially for heating activity that usually it calls as propane heaters. Propane is one of the hydrocarbon types that have low emission carbon products. But overall user should be carefully when using it because there are some hazards and danger accident when we use propane heater units negligent. Therefore in addition we get lot benefit from these units, don't forget to always use these units properly.

We know well that propane heaters are one of innovative alternative solution for people who want heat their room inexpensive and efficiently. The stable and affordable of propane fuel is one of important points about it. Most of them also usually have standard models, types, sizes, and technology like commonly heating units so far.

One of popular types of them is portable models. It looks compact and mobile so we move these types easily. Moreover, there are already many appliance units that use propane fuel for heating such as water heating (supply hot water and pool heating), indoor or outdoor heating, etc. Because they use flammable nature propane gas, that usually the fuel storage to the pressurized tanks, it is most risks that usually can result accidents when we use propane heater models, especially their byproducts of combustion process.

All right, below are some the propane heater hazards information we should know for use these heaters keep safely and keep far away from serious accidents:

1. Propane fuels usually are not produced with single hydrocarbon, they mix with other like butane. The popular type of them usually call with LPG, commonly it is combination between 60 percent butane and 40 percent propane or other various options. According to Energy Information Administration, gas companies cannot find propane deposit in nature but usually always mixed in with methane or familiar we call as natural gas. Economical transportation and distribution make gas companies always use liquid transportation model. In addition, this models discovered and popular since in 1912.
2. Ideally we use propane heater units with similar way when we use natural gas heaters that usually have pipe line transmission to supply fuel (methane). But for some reasons we usually utilize propane heater with pressurized gas. And it some time when we negligent can leak, and finally can result two types hazard accidents that are asphyxiation and explosion. Mostly leaks of tank caused by faulty installation and not-properly operation. As add information, catastrophically accident can occur when large container fails result high probability that call as BLEVE (Boiling Liquid Expanding Vapor Explosion).
3. If those two type hazard accidents happen, there are obviously effects. Asphyxiation can result problem to the human respiratory system and it is hardly to prevent self-help measures. Then the explosion can produce high pressure and thermal explosion flame risk, these condition can destroy and even demolish the building of the house or office.

Overall if use propane heaters properly and obey the manufacture's operation and maintenance guidelines, those hazards can be prevented. Below are some tips about it that we should consider:

1. The fist thing that we should consider is about to ensure that the heater and the tank keep in well condition.
2. Then provide adequate vent for circulation air. It purposes to reduce probability risk of asphyxiation risk. As possible use units that have deflection Oxygen sensor automatically feature. Or install carbon monoxide detection.
3. Check your heater and the tank regularly and do the maintenance properly.
4. Place the heater on stable surface, and keep distance between flammable materials to the unit.
5. When we charge or replace tank fuel with new one, ensure that the tank looks still in good condition. As add info, propane fuel doesn't have odor so it is hardly to detect when the tank leaks. Therefore gas companies usually include an odoriferous compound to it so we can smell when tank leaks. The odoriferous compound usually from sulfur, marcpatan substance or else. If we smell the leak gas from the tank, stop all activities that can ignite the propane fuel and as soon as turn off the tank valve. If this precaution doesn't solve or you afraid to overcome your self, as soon as possible call for help.

Find completely information about the propane heater hazards here!


The Propane Heater Hazards We Should Know!

Order Standby Electric Generators Canon Mp560 Ink Right Now Playtex Printable Coupon Discount

Sunday, November 6, 2011

Healthcare And Facility Infrastructure

!±8± Healthcare And Facility Infrastructure

New diagnostic and treatment equipment occupies dedicated spaces. At the same time, there is increased emphasis on ambulatory care for many procedures and illnesses, with more selective inpatient admissions and decreased length of stays. There also is a trend toward networking remote primary care and diagnostic centers to other types of care facilities.

With these changes comes the need to provide more sophisticated HVAC, power, telecommunications/data and life safety systems. Owners, architects and engineers alike face the challenge of allocating space and developing a facility infrastructure that not only accommodates these systems but also allows optimal integration and flexibility today and in the future.

To meet the demands placed on system infrastructure and to provide future flexibility, space must be allocated for much larger mechanical, electrical and telecommunications distribution hubs and risers. One of the biggest problems in existing facilities, which may be 30, 40 or 50 years old, is finding and reprogramming enough space to revamp the entire core infrastructure and controls. In new facilities, owners may be understandably reluctant to add to the amount of space required for the engineering systems.

Indeed, the proportion of the cost of the building systems to the total cost of a new facility is now approaching 50 percent. Whether planning an upgrade or new construction, finding cost-effective solutions requires cooperation among owners, architects and engineers.

Optimizing the HVAC System

Energy efficiency, indoor air quality, comfort and flexibility for future changes are the key criteria to keep in mind when engineering the HVAC system, which must provide the optimal environment for a range of treatment and support spaces.

HVAC systems today comprise more individual units dedicated to meeting the different temperature and air-quality needs of spaces such as telecommunications/data equipment rooms, diagnostic equipment rooms, operating rooms, emergency rooms and in-patient rooms. Zoning also allows the mechanical engineer to employ specific tools, such as high-efficiency air filters, where they are needed.

To assure indoor air quality, the HVAC system must be able to provide proper filtration and ventilation, and minimize cross-contamination of building spaces. Airflow must be directed from clean areas to less clean spaces and then exhausted outside. Controls must use a reliable monitoring and alarm system to ensure maintenance of proper indoor air quality and pressurization standards.

"All-air" HVAC systems, which allow use of primarily outside air to, whenever possible, heat and cool a facility, enhance indoor air quality and the energy efficiency of the HVAC system. Efficient motors, variable speed drives and economizer cycles all can be used to minimize energy consumption.

In any case, HVAC systems are heavy energy consumers. But deregulation has provided the opportunity to use systems that can use multiple energy sources to run boilers and produce chilled water. At any given time, the facility can choose which energy source to use (electricity, natural gas or steam) depending on demand, cost and availability.

The nature of today's hospital demands selection of state-of-the-art direct-digital-controlled HVAC systems, which are accurate and flexible, allowing control from central and remote locations.

Power: Quantity and Quality

Flexibility of power system infrastructure and power quality are key criteria for the electrical power system design. Spare capacity has to be built into every major normal and emergency power riser. In most cases, minimum code-suggested values for feeder and equipment sizing may not be adequate for modern hospital design because of universal usage of computer equipment for a wide variety of functions.

The nature and sheer volume of hospital systems and equipment also create challenges. For example, more and more equipment today is electronic, which contributes distortion to the electrical system. Current causes this distortion and voltage harmonics that affect both normal and emergency power supply and distribution systems, and sensitive medical electronic equipment fed from it.

To minimize harmonic effects on the power system, 200 percent neutral should be the standard on all three-phase, four-wire systems and equipment. Rectifiers and trap filters are strongly recommended on all variable frequency drives. Emergency generator specifications have to include provisions for 100 percent non-linear loads. Usually, generators will have to be one size larger than the engine size to compensate for non-linear loads.

The high volume of electrical equipment also creates electromagnetic interference. This is not the place to try to economize on construction costs. Electrical engineers often recommend rigid steel conduits for major feeders - especially those passing through critical areas - rather than the thinner, less expensive electrometallic tubing, which does not block magnetic interference.

The ratio of emergency to normal power is increasing. The trend is to place more systems on the emergency generator than dictated by minimum code requirements. For example, cooling is not required to be on generators, but more hospitals are electing to do so. Indeed, owners of facilities designed to meet code and budget requirements just a few years ago now may want to add systems to the emergency generator, only to find that their generators do not have adequate capacity.

Internet, Telemedicine Make the Call

The design of the telecommunications infrastructure in hospitals today is driven by the expanding need for high-speed, high-quality computing and networking both within the hospital facility and between the hospital and the outside world.

Hospitals already have in place or are adding new local area networks (LANs), often Ethernet systems, to network all types of data, from patient records to radiology data, throughout the facility. Now networks are expanding, with installation of data ports at each bed, allowing access to view and update patient records as well as diagnostic images. (The future is in wireless, portable access via hand-held computers, already being seen in some applications.)

Expanding the network to each bed necessitates upgrading the infrastructure to comply with the latest standards. This, in turn, requires telecommunications closets to be dispersed throughout the building, with certain distance limitations between the closets and each data outlet and certain closet size requirements based on the size of the area and the number of outlets.

Meeting these standards and future needs requires a lot of space and, when upgrading an existing facility or planning a new facility, owners and planners must be prepared to allocate it. Usually this space is in the core of the building, not in an underutilized corner, to meet distance requirements.

The good news is that current standards in the design of the telecommunications infrastructure should serve health care facilities well for 10 to 15 years.

This means that - even if new cable itself may be required in the next decade - the number and spacing of telecommunications closets should remain consistent - the crucial issue in space planning. Indeed, many believe that the next generation of cable will be "all we will ever need" in copper cable. Additional speed will have to be accommodated using fiber-optic cable.

The logical extension of the LAN is a wide-area network (WAN) that enables telemedicine: remote access to patient records, diagnostic images and other data by computer, with the capability of simultaneous videoconferencing. A lot of institutions are talking about telemedicine, and some are forming pilot projects. Some are making the connections between the hospital and physicians' offices and outpatient clinics over the Internet. Others are using dedicated T1 or ISDN phone lines, which offer higher-bandwidth (i.e., high quality) communication as well as quick speeds.

In fact, much of the capability for the WAN depends on the main telecommunications equipment in the building and the cabling that goes out to the world. Many hospitals have multiple T1 copper phone lines coming in and some fiber-optic cable. The trend is to bring in more fiber, which is what is really needed to drive video imaging. Either way, space is needed in the main telecommunications room for the large amount of equipment to communicate with remote sites.

Life Safety, Security

As it is in emergency power, so it is in life safety: The trend is to exceed code in both existing and new facilities. Many existing hospitals have outdated fire alarm systems and inadequate sprinkler systems by today's standards. Owners are retrofitting with modern, computer-controlled fire alarm systems - centrally monitored and controlled from a fire command station, usually in the main lobby.

The new systems require new water service, fire pump and vertical distribution system and additional sprinklers. This complicates the cost and space issues. A sophisticated mechanical system can also provide smoke control, either automatically or manually from the fire control station. This is a highly reliable early warning system.

Security systems are vendor-driven, changing rapidly, and are generally planned and implemented after a building is completed. Much of a security installation is low voltage. Thus, engineers should assure that enough space and power are allocated in the backbone for security hub equipment. Needs differ, but most security systems today use some combination of card access and biometrics readers, motion detection, closed-circuit television and metal detectors, as well as personnel.

Higher Demands

It's also worth mentioning that stand-alone ambulatory care facilities may place even higher demands on infrastructure because there is more sophisticated equipment packed into them than in some hospitals, which contain patient rooms and more support spaces.

Now, what about controls? Given the size and complexity of the hospital setting, integrated controls would seem to offer distinct benefits. Yet it is not only expensive but often difficult to build a system that integrates control of all mechanical and electrical systems because many control manufacturers' systems are proprietary.

There has been an effort in the market to develop "open protocol systems" - creating an integrated control system - but applications have involved links between components or subsystems rather than completely integrated automation systems. Today, it is more common to selectively marry major control components to the building management system regardless of whether the controls use open protocols. Continued introduction of products that use open protocols promises to expand the use of integrated control systems.

In the final analysis, designing a health care facility infrastructure for the 21st century is all about optimizing system integration and flexibility to ensure that the facility will remain a fully functioning organism in the future. Perhaps nowhere else is the metaphor of infrastructure as "backbone" more apt than in health care.


Healthcare And Facility Infrastructure

Great Deals 110v Transformers

Tuesday, November 1, 2011

Boiler Upgrades That Save Fuel and Energy: Clip 3 of 6

Prices Fleurville Mothership Bag Purchase Husqvarna Backpack Leaf Blower Enfamil Next Step Ideas


Twitter Facebook Flickr RSS



Fran�ais Deutsch Italiano Portugu�s
Espa�ol ??? ??? ?????







Sponsor Links